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Abstract. The classical 0–1 knapsack problem is considered with two objectives. Two methods of
the “two–phases” type are developed to generate the set of efficient solutions. In the first phase,
the set of supported efficient solutions is determined by optimizing a parameterized single-objective
knapsack problem. Two versions are proposed for a second phase, determining the non-supported
efficient solutions: both versions are Branch and Bound approaches, but one is “breadth first”, while
the other is “depth first”. Extensive numerical experiments have been realized to compare the results
of both methods.
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1. Introduction

Until recently, multi-objective combinatorial optimization (MOCO) did not receive
much attention in spite of its potential applications. The reason is probably due
to specific difficulties of MOCO models as pointed out in a recent survey [6]
concerning this field.

The aim of the present paper is to develop and compare two procedures to
generate the set of efficient solutions of a particular bi-objective MOCO problem,
the Knapsack problem. This is a basic well known combinatorial optimization
problem, important for applications and as a sub-problem of more complicated
ones. Moreover its mathematical structure is relatively simple and there exist
efficient algorithms to solve it, like the Martello and Toth [4] method.

In a bi-objective framework, the Knapsack problem can be formulated as

8>>>>>>><
>>>>>>>:

“ max ” zk(X) =
nX

j=1

ck
j
xj k = 1; 2

nX
j=1

wjxj �W

xj 2 f0; 1g

(P)
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where coefficients ck
j
, wj and W are non negative integers and X = (x1; . . . ; xn);

in order to avoid trivial solutions, we suppose in addition that

wj �W 8 j = 1; . . . ; n; and
nX

j=1

wj > W:

This model is suitable in various contexts including problems of media selection
[2] and capital budgeting [5].

A solution X? of problem P is efficient if there does not exist any other
feasible solution X such that zk(X) � zk(X

?); k = 1; 2; with at least one strict
inequality. We will denote by E(P ) the set of efficient solutions of problem P .

In multi-objective integer linear programming, it is necessary to distinguish two
kinds of efficient solutions (cf. [6]):
� the set SE(P ) of supported efficient solutions which are optimal solutions of

the parameterized single objective problem8>>>>>><
>>>>>>:

max z�(X) = �1z1(X) + �2z2(X)
nX

j=1

wjxj �W

xj = (0; 1)
�1 > 0; �2 > 0

(P)

� the setNSE(P ) = E(P )nSE(P ) of non-supported efficient solutions which
cannot be found by optimization of problem (P�). These non-supported effi-
cient solutions are necessarily located in the triangles4ZrZs generated in the
objective space by two successive supported efficient solutions, as represented
in Figure 1.

Recently, several studies have been devoted to the generation of E(P ):
– an adaptation to the multi-objective framework of the implicit enumeration

method of Martello and Toth has been proposed by Ulungu and Teghem [8];
– in [7] a two-phase method is developed: in the first phase, SE(P ) is obtained

by solving problem (P�); then a Branch and Bound procedure is applied to
each triangle 4ZrZs to generate NSE(P );

– in [9] and [1], Simulated Annealing is adapted to the multi-objective context
to approximate E(P ) in a heuristic way.

In the following sections, we will describe two new procedures to generate
E(P ) which are both two-phases methods.

The common first phase of these two procedures is recalled in section 2; the
second phases are respectively described in sections 3 and 4.

The first procedure improves on what is done in [7], due to a better lower bound
of z� for non supported efficient solutions in triangles 4ZrZs. In the second
procedure, we adapt the implicit enumeration scheme of [8] to generate the non
supported efficient solutions in each triangle 4ZrZs.

Extensive numerical results are given in section 5 in order to compare the two
methods.
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∆

Figure 1. Supported efficient solutions Z1; . . . ; Zm and potential regions 4ZrZs of non
supported efficient solutions.

2. The First Phase: Determination of SE(P )

Let S [ S0 be the list of supported efficient solutions already generated; S is
initialized with the two efficient optimal solutions respectively of objectives z1 and
z2, obtained by Martello and Toth’s single-criterion algorithm.

Solutions of S are ordered by increasing value of criterion 1; let Xr and Xs

be two consecutive solutions in S, thus with z1r < z1s and z2r > z2s where
zkl = zk(X

l).
The single-criterion problem P� is considered with the values �1 = z2r � z2s

and �2 = z1s � z1r and optimized by Martello and Toth’s algorithm (in fact a
variant which returns all optimal solutions).

Let fXt; t = 1; . . . ; Tg be the set of optimal solutions obtained in this manner
and fZt; t = 1; . . . ; Tg their images in the objective space. The two possible cases
are illustrated respectively in Figures 2 and 3.
� fZr; Zsg

T
fZt; t = 1; . . . ; Tg = ;

SolutionsXt are new supported efficient solutions.X1 andXT — provided T > 1
— are put in S and if T > 2, X2; . . . ;XT�1 are put in S0.
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Figure 2. New supported efficient solutions in S

It will be necessary at further steps to consider the pairs
�
Xr;X1� and

�
XT ;Xs

�
� fZr; Zsg � fZt; t = 1; . . . ; Tg
Solutions fXt; t = 1; . . . ; Tg n fXr;Xsg are new supported efficient solutions
giving the same optimal value as Xr and Xs for z�(X); we put them in list S0.

This first phase is continued till all pairs (Xr;Xs) of S have been examined
without extension of S.

Finally, we obtain SE(P ) = S [ S0 as illustrated in Figure 4

3. Second Phase: a Breadth First Branch and Bound

The purpose is to examine each triangle 4ZrZs determined by two successive
solutions Xr and Xs of SE(P ) and to determine the possible non supported
solutions whose image lies inside this triangle.

As previously, we note z�(X) = �1z1(X)+�2z2(X), with �1 = z2r� z2s and
�2 = z1s � z1r.
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Figure 3. New supported efficient solutions in S0

3.1. LOWER BOUNDS FOR z�

3.1.1. Bound u1

Clearly, inside the triangle 4ZrZs, we must have

z�(X) � �1z1r + �2z2s = u1

(see Figure 5)

3.1.2. Bound u2

Let us suppose that we have now determined some feasible solutions X1; . . . ;Xm

defining points Z1; . . . ; Zm inside the triangle (see Figure 5). We note
X0 � Xr; Xm+1 � Xs and zk(Xi) = zki; k = 1; 2; i = 0; . . . ;m+ 1:
Each non dominated point inside the triangle must satisfy (see Figure 5)

z�(X) � max
i=0...;m

min
�
�1z10 + �2z2i; �1z1i + �2z2;m+1

�
= u2:
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Figure 4. SE(P ) = S [ S0

3.1.3. Bound u3

We also have for non dominated points inside the triangle (see Figure 5)

z�(X) � min
i=0...;m

�
�1z1i + �2z2;i+1

�
= u3:

It is easy to verify that u3 � u2 � u1:

N.B. Of course, if m = 0 then u3 = u2 = u1, and if m = 1; u3 = u2 > u1.

3.2. REDUCTION PROCEDURE

Some variables can be eventually fixed to 0 or 1 to obtain points inside the triangle.
For each of the two situations xj = 0 and xj = 1, upper bounds of z1, z2 and z� are
determined, for instance the Martello and Toth’s upper bounds (see [4] and [7]).

Let (vj0
1 ; v

j1
1 ), (vj0

2 ; v
j1
2 ) and (vj0

�
; v

j1
�
) these pairs of upper bounds for each

variable xj .
If vj0

1 � z1r or vj0
2 � z2s or vj0

�
� u, then it is necessary to put xj = 1 to be in the

triangle. Similarly, if vj1
1 � z1r or vj1

2 � z2s or vj1
�
� u, then we fix xj = 0.

So, before getting into the analysis of the triangle, the dimension of the problem
can eventually be reduced.
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Figure 5. Lower bounds for z�

3.3. SEPARATION PRINCIPLE

We associate to the node S0 of the tree, one of the solutions Xr or Xs, let us
say Xs, and we note fjjxs

j
= 1g = fp1; . . . ; pqg, the set of indices of variables

equal to 1 in this associated solution. We create q subnodes S1; . . . ; Sq which are
characterized by one to q fixed variables in the manner illustrated in Figure 6.

Proceeding like this, the sets of admissible solutions at each subnode are disjoint.
Each subnode is examined separately. A list L of solutions will contain potential
non supported solutions. Initially, L is empty and at the end of the procedure L,
will contain the non supported efficient solutions related to the triangle 4ZrZs.

3.4. FIRST QUICK FATHOMING TESTS OF A NODE

Inside a node, we compute an upper bound, for instance Martello and Toth bounds,
for objectives z1; z2 and z�.

Let v1; v2 and v� be these bounds. Three fathoming tests are considered.
Test 1: if v1 � z1r, the node is fathomed.

Test 2: if v2 � z2s, the node is fathomed.

Test 3: if v� � �3, the node is fathomed.
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Figure 6. Separation principle

These tests guarantee indeed that the admissible solutions of this node will be
outside the triangle 4ZrZs as shown in Figure 7.

Note that test 1 (resp. test 2) will be efficient only if Zr (resp. Zs) is close to the
optimal point for z1 (resp. for z2).

3.5. OPTIMIZATION INSIDE A NODE

Objective z�(X) is optimized on the considered node. Let eX be the optimal solution
with ez1 = z1( eX), ez2 = z2( eX) and ez� = z�( eX).
Four different cases can appear (see the four regions of Figure 8).
1) If ez� � u, then eX is dominated and the considered subnode is fathomed (region

1).
2) and 3) If ez� > u and either ez1 � z1r (region 2) or ez2 � z2s (region 3), then eX

is dominated but the subnode is not fathomed.
4) Otherwise (region 4), i.e. ez� > u, ez1 > z1r and ez2 > z2s simultaneously, eX is

a potential efficient point and the node is not fathomed.
� If eX is dominated by a solution of the list L, there is no change in L.
� Otherwise

� eX is set in L and this list is updated by pairwise comparisons, keeping only
in it non dominated solutions by eX;

� the upper bound u (u2 or u3) is updated;
� the reduction procedure (see x3.2) can eventually be repeated as u has been

increased.
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Figure 7. First fathoming tests

3.6. PROGRESSION IN THE TREE

All the subnodes are examined in a “breadth first” manner. Then, between all non
fathomed nodes, we choose for being separated the node with the greatest ez� value.
The branching process is made in the same manner as in x3.3 and based on the
variables equal to 1 in solution eX .

The procedure stops when all the created nodes have been fathomed. By this
time, the list L contains the part of NSE(P ) related to triangle 4ZrZs.

4. Second Phase: a Depth First Branch and Bound

The purpose is again to determine the non supported efficient solutions having
image inside the triangle 4ZrZs, for each successive solutions Xr and Xs of
SE(P ).

The reduction procedure of x3.2 is first applied to possibly fix definitively some
variables. As in section 3, a listL is created containing at each step of the procedure,
the potential non supported efficient solutions already found.
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Figure 8. Optimization inside a node

4.1. SEPARATION PRINCIPLE

The variables are ordered by decreasing values of
�1c

1
j+�2c

2
j

wj
as for the determination

of the upper bound of objective z� (see [4] or [7]).
At each node Sm, the next variable with regard to this order is fixed to 1 or 0 to

create two sub-nodes like in Figure 9

Figure 9. Separation principle

4.2. PROGRESSION IN THE TREE

The sub-nodes are examined in a “depth first” manner.
First we check whether the solution (x1; . . . ; xk; 1; 0; . . . ; 0) satisfies the three

constraints:
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�
nX

j=1

wjxj �W (feasible solution);

�
nX

j=1

c1
j
xj � z1s � 1 (necessary condition to be in the triangle);

�
nX

j=1

c2
j
xj � z2r � 1 (necessary condition to be in the triangle).

If it is the case, the subnode Sm+1 is considered. If not, Sm+1 is fathomed and
Sm+2 is immediately considered.

4.3. EVALUATION OF A NODE

The three fathoming tests of x3.4 are applied.
Test 1: if v1 � z1r, the node is fathomed;

Test 2: if v2 � z2s, the node is fathomed;

Test 3: if v� � u, the node is fathomed,
where u is the lower bound (u2 or u3) taking into account the solutions inside the
list L. If the node is fathomed, the usual backtracking is applied coming back to
the last node of type Sm+2 not yet evaluated.

4.4. TERMINAL NODES

The solution corresponding to a terminal node is possibly an efficient solution. For
this:
– the solution must be inside the triangle 4ZrZs;
– the solution must be non dominated by each solution of L.
If it is the case, this solution is set in L and the list L is updated by pairwise
comparisons; the upper bound u is also updated.

5. Numerical Results

All the tests have been made on a PC Pentium 133MHz.

5.1. IMPACT OF THE CAPACITY OF THE KNAPSACK

It is well known that the single-objective Knapsack problem is more difficult to
solve if the ratio

r =
W
nX

j=1

wj

is close to the value 0.5. Of course, this is also true in a multi-objective framework
as proved by table 1 and figure 10. For r ranging from 0:1 to 0.9, we have generated
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20 problems of dimension n=250. Table 1 gives the average number of efficient
solutions in each case and the corresponding average time to obtain these solutions
with algorithm of section 4 with the bound u3; figure 10 represents these results
graphically.

Table I. Average number of effi-
cient solutions

r time (sec.) Solutions

0.1 33.34 168
0.2 94.81 316
0.3 197.3 487
0.4 231.58 564
0.5 246.76 605
0.6 201.87 583
0.7 155.01 504
0.8 70.33 328
0.9 15.65 146

Figure 10. Impact of the capacity

In the following tests, we have always chosen r = 0:5.

5.2. COMPARISON OF ALGORITHMS AND BOUNDS

For the dimensionn of the problem varying fromn= 10 tilln = 500 by steps of 10,
we have randomly generated 20 problems for each dimension n. These problems
have been solved by the “breadth first” and “depth first” algorithms; to analyse
the impact of the bound u, the two algorithms have been applied successively
with u = u2 and u = u3. Table 2 gives the mean number of supported and non
supported efficient solutions for each dimension n and Figure 11 represents these
results graphically.

Clearly, the number of supported efficient solutions increases very slowly com-
pared with the number of non supported efficient solutions. This yields a clear
justification for investigating NSE(P ).
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Table II. Number of solutions

r Total Sup. Non Sup.

10 4 2 1
20 8 4 4
30 17 6 11
40 28 8 20
50 39 10 28
60 53 12 41
70 80 14 55
80 96 17 79
90 106 17 88

100 134 18 116
110 152 20 131
120 183 23 160
130 218 24 194
140 232 26 205
150 259 27 231
160 279 29 249
170 305 30 274
180 351 34 317
190 368 36 332
200 410 36 374
210 437 39 398
220 469 40 428
230 504 42 462
240 565 43 521
250 605 47 558
260 600 47 553
270 659 46 613
280 688 50 637
290 688 49 639
300 834 55 778
310 876 56 820
320 847 55 792
330 966 60 905
340 967 60 907
350 1017 62 954
360 1063 63 1000
370 1151 66 1084
380 1153 66 1087
390 1231 66 1164
400 1198 69 1128
410 1327 74 1253
420 1403 73 1330
430 1382 76 1306
440 1525 77 1447
450 1516 78 1438
460 1567 80 1487
470 1581 80 1501
480 1785 83 1701
490 1724 83 1641
500 1778 86 1691
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Table III. Computing time

n t1 t2 t3 t4 t5

10 0.00 0.00 0.00 0.00 0.00
20 0.00 0.04 0.03 0.03 0.02
30 0.02 0.23 0.16 0.19 0.13
40 0.10 0.85 0.57 0.54 0.38
50 0.21 3.48 2.22 1.18 0.85
60 0.37 10.32 6.26 2.76 1.93
70 0.50 41.37 23.55 5.19 3.23
80 0.76 67.20 38.35 6.97 4.37
90 0.92 69.15 41.40 8.68 5.43

100 1.26 765.88 394.75 16.60 9.69
110 1.66 1533.44 616.08 22.40 13.19
120 2.24 1766.65 967.85 30.31 17.05
130 2.54 48.29 27.13
140 3.25 51.59 28.16
150 3.82 68.50 35.70
160 5.03 88.54 46.53
170 5.32 108.48 56.11
180 6.73 135.89 71.11
190 7.90 179.68 93.31
200 8.34 240.06 111.44
210 9.72 224.05 117.78
220 11.05 282.50 142.53
230 13.58 365.68 186.79
240 13.65 411.84 191.32
250 15.86 494.24 246.76

n t1 t2 t3 t4 t5

260 17.41 533.67 258.03
270 18.53 649.18 300.87
280 22.41 778.74 338.96
290 20.51 748.60 339.12
300 25.99 1085.69 490.25
310 31.25 1300.65 545.21
320 31.51 1203.40 554.60
330 36.84 1837.61 718.51
340 36.28 1813.46 761.89
350 41.04 2104.81 828.95
360 42.47 2322.86 966.00
370 47.54 2460.16 1019.36
380 48.66 2680.20 1119.61
390 51.87 3236.04 1376.35
400 58.18 3146.48 1279.71
410 65.05 1621.67
420 68.18 1737.17
430 73.46 1647.87
440 71.38 1955.72
450 78.99 2067.49
460 82.01 2244.20
470 88.81 2303.04
480 94.31 2790.25
490 99.57 2678.21
500 105.29 3222.60
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Figure 11. Number of efficient solutions

Table 3 indicates the average computing time to obtain these solutions; the five
columns correspond respectively to
t1: the first phase,
t2: the second phase with “breadth first BB” and bound u2,
t3: the second phase with “breadth first BB” and bound u3,
t4: the second phase with “depth first BB” and bound u2,
t5: the second phase with “depth first BB” and bound u3.

Figure 12. Computing time

Figure 12 is the graphical representation of these times and Figure 13 shows the

time-ratio
t1

t5
. It appears from these results that

– the main computing time effort must be devoted to generate NSE(P );
– the bound u3 is definitely more efficient than bound u2;
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Figure 13. Time proportion: First phase/ Second phase

– the second phase “depth first BB” (section 4) is much faster than the “breadth
first BB” (section 3).

The reasons of the better performance of the “depth first BB” second phase seems
to be that, contrary to the other algorithm,
– it doesn’t call frequently the single-objective algorithm;
– it doesn’t generate solutions outside the triangles 4ZrZs.
Nevertheless, the “breadth first BB” is more general and can be applied to any
bi-objective combinatorial optimization problem for which an efficient single-
objective algorithm is available. Our current research in this field is oriented in
four directions:

– the separation principle (section 3.3) suggests that the algorithm can be effi-
ciently implemented in a parallel environment (see for instance the recent book
[3]).

– some heuristics are developed to approximate SE(P ) for very large dimension
problems. One of them is an adaptation of Simulated Annealing to a multi-
objective framework and another one is based on polyhedral theory.

– for practical applications, it is not necessary to generateSE(P ) but to determine
a “good compromise” in regard of the preferences of the decision-maker. For
this purpose, we are also developing interactive methods.

– Finally other Multi-Objective Combinatorial Optimization problems are also
analysed.
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